Simulation Analysis of Cement-Stabilized Macadam Compaction Processing Based on the Discrete Element Method

Author:

Liang Chunyu,Zhang Hao,Liu Feng,Yan Xili,Bi HaipengORCID

Abstract

The mechanical properties of cement-stabilized macadam (CSM) base mixture are closely related to its forming process. Although the present study investigates the macroscopic effects of molding on cement-stabilized macadam, mesoscopic research analyses of the internal composition’s structural characteristics and change trends after molding lack sufficient intuitiveness. In this study, we built three-dimensional models of cement-stabilized macadam for heavy compaction molding and vibration molding tests based on the discrete element theory. The effects of different molding methods on cement-stabilized macadam’s internal structure were revealed from the mesoscopic perspective by tracking changes in porosity, coordination number, force chain development and internal particle position during the simulation molding process. The simulation results show that (1) the first 10 compactions had a significant influence on the molding effect, and specimens’ height and porosity decreased the fastest; (2) after the simulation experiments, the average coordination number of particles in the vibration molding specimen was 2.3% higher than that of the heavy compaction molding specimen; (3) after the simulation experiments, the vibration molding specimen’s porosity was 2.5% lower than that of the heavy compaction molding specimen; and (4) the vibration molding specimen’s particle distribution was more uniform, whereas the heavy compaction molding specimen’s particle distribution was dense at the top and sparse at the bottom. Overall, the effect of vibration molding is superior to that of heavy compaction molding.

Funder

Science Technology Development Program of Jilin Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3