Abstract
Face recognition is a natural skill that a child performs from the first days of life; unfortunately, there are people with visual or neurological problems that prevent the individual from performing the process visually. This work describes a system that integrates Artificial Intelligence which learns the face of the people with whom the user interacts daily. During the study we propose a new hybrid model of Alpha-Beta Associative memories (Amαβ) with Correlation Matrix (CM) and K-Nearest Neighbors (KNN), where the Amαβ-CMKNN was trained with characteristic biometric vectors generated from images of faces from people who present different facial expressions such as happiness, surprise, anger and sadness. To test the performance of the hybrid model, two experiments that differ in the selection of parameters that characterize the face are conducted. The performance of the proposed model was tested in the databases CK+, CAS-PEAL-R1 and Face-MECS (own), which test the Amαβ-CMKNN with faces of subjects of both sexes, different races, facial expressions, poses and environmental conditions. The hybrid model was able to remember 100% of all the faces learned during their training, while in the test in which faces are presented that have variations with respect to those learned the results range from 95.05% in controlled environments and 86.48% in real environments using the proposed integrated system.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献