MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia

Author:

Khan Arshad MahmoodORCID,Li Qingting,Saqib Zafeer,Khan Nasrullah,Habib TariqORCID,Khalid Nadia,Majeed Muhammad,Tariq AqilORCID

Abstract

Chilgoza pine is an economically and ecologically important evergreen coniferous tree species of the dry and rocky temperate zone, and a native of south Asia. This species is rated as near threatened (NT) by the International Union for Conservation of Nature (IUCN). This study hypothesized that climatic, soil and topographic variations strongly influence the distribution pattern and potential habitat suitability prediction of Chilgoza pine. Accordingly, this study was aimed to document the potential habitat suitability variations of Chilgoza pine under varying environmental scenarios by using 37 different environmental variables. The maximum entropy (MaxEnt) algorithm in MaxEnt software was used to forecast the potential habitat suitability under current and future (i.e., 2050s and 2070s) climate change scenarios (i.e., Shared Socio-economic Pathways (SSPs): 245 and 585). A total of 238 species occurrence records were collected from Afghanistan, Pakistan and India, and employed to build the predictive distribution model. The results showed that normalized difference vegetation index, mean temperature of coldest quarter, isothermality, precipitation of driest month and volumetric fraction of the coarse soil fragments (>2 mm) were the leading predictors of species presence prediction. High accuracy values (>0.9) of predicted distribution models were recorded, and remarkable shrinkage of potentially suitable habitat of Chilgoza pine was followed by Afghanistan, India and China. The estimated extent of occurrence (EOO) of the species was about 84,938 km2, and the area of occupancy (AOO) was about 888 km2, with 54 major sub-populations. This study concluded that, as the total predicted suitable habitat under current climate scenario (138,782 km2) is reasonably higher than the existing EOO, this might represent a case of continuous range contraction. Hence, the outcomes of this research can be used to build the future conservation and management plans accordingly for this economically valuable species in the region.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3