Spatiotemporal Oasis Land Use/Cover Changes and Impacts on Groundwater Resources in the Central Plain of the Shiyang River Basin

Author:

Wang Lifang12,Nie Zhenlong1,Yuan Qinlong3,Liu Min1,Cao Le1ORCID,Zhu Pucheng1,Lu Huixiong4,Feng Bo4

Affiliation:

1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

2. Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China

3. Chongqing Jiangshan Hydropower Construction Engineering Survey and Design Consulting Co., Ltd., Chongqing 400000, China

4. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China

Abstract

The impacts of land use/cover changes (LUCCs) on groundwater resources are a global issue. The Shiyang River Basin of China is a typical, ecologically fragile area. Focusing on the Wuwei sub-basin of the central plain, this study analyzed typical remote sensing image data for 17 specific dates since 1970. Before the Comprehensive Treatment Program in 2007, the area of natural oases decreased at a rate of 16.25 km2/year, while the area of farmland expanded at a rate of 13.85 km2/year. The farmland expansion preferentially occurred in low-vegetation-coverage oases, where the groundwater depth increased from 4 to 20 m. The consumption of groundwater increased from 7319.5 × 104 m3/year to 12,943.2 × 104 m3/year. During the period 2008–2018, the areas of both the natural oases and farmland decreased at rates of 2.57 km2/year and 8.99 km2/year, respectively. The groundwater level rose significantly in the south and west, as well as near the main river channel. Groundwater consumption has been restored to 7270.4 × 104 m3/year. Only 0.12 km2 of every 1.17 km2 of the original natural oases were restored through the natural farmland–natural oases conversion process. Groundwater depth increased significantly with the continuous expansion of farmland. Since the farmland area was effectively controlled, the trend of groundwater-level decline was significantly improved. These findings provide scientific support for the ecological restoration and reconstruction of oases, as well as an efficient and balanced development of river basin water resources.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Hebei Province, China

Fundamental Research Funds for Central Public Welfare Research Institutes, CAGS

China Geological Survey Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3