Groundwater Level Dynamic Impacted by Land-Cover Change in the Desert Regions of Tarim Basin, Central Asia

Author:

Wang Wanrui12,Chen Yaning3,Wang Weihua3ORCID,Chen Yapeng3,Hou Yifeng14

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China

3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

4. University of Chinese Academy of Sciences, Beijing 100000, China

Abstract

Groundwater is essential to residents, ecology, agriculture, and industry. The depletion of groundwater impacted by climatic variability and intense human activities could threaten water, food, and socioeconomic security in arid regions. A thorough understanding of groundwater level dynamics and its response to land-cover change is necessary for groundwater management and ecosystem improvement, which are poorly understood in arid desert regions due to a scarcity of field monitoring data. In our study, spatiotemporal characteristics of groundwater level impacted by land-cover change and its relationship with vegetation were examined using 3-years in-situ monitoring data of 30 wells in the desert regions of Tarim Basin during 2019–2021. The results showed that the depth to groundwater level (DGL) exhibited obvious spatial and seasonal variations, and the fluctuation of DGL differed significantly among the wells. The cultivated land area increased by 1174.6, 638.0, and 732.2 km2 during 2000–2020 in the plains of Yarkand, Weigan-Kuqa, and Dina Rivers, respectively, mainly transferring from bare land and grassland. Annual average Normalized Difference Vegetation Index (NDVI) values increased with time during the period in the plains. DGL generally exhibited a weakly increasing trend from 2019 to 2021, mainly due to human activities. Land-cover change significantly affected the groundwater level dynamic. Generally, the groundwater system was in negative equilibrium near the oasis due to agricultural irrigation, was basically in dynamic equilibrium in the desert region, and was in positive equilibrium near the Tarim River Mainstream due to irrigation return water and streamflow. NDVI of natural desert vegetation was negatively correlated with DGL in the desert regions (R2 = 0.78, p < 0.05). Large-scale land reclamation and groundwater overexploitation associated with water-saving irrigation agriculture development have caused groundwater level decline in arid oasis-desert regions. Hence, controlling groundwater extraction intensity, strengthening groundwater monitoring, and promoting water-saving technology would be viable methods to sustainably manage groundwater and maintain the ecological environment in arid areas.

Funder

Innovative Environment Construction Special Program of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3