Groundwater Hydrochemistry and Recharge Process Impacted by Human Activities in an Oasis–Desert in Central Asia

Author:

Yao Yuan1,Tu Chenwei1,Hu Gaojia1,Zhang Yuhan1,Cao Hanyuan1,Wang Wanrui12ORCID,Wang Weihua3

Affiliation:

1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830017, China

3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

Intense anthropogenic activities in arid regions remarkably affect groundwater by causing phreatic decline and water environmental deterioration. A systematic understanding of groundwater hydrochemical evolution and recharge is critical to regional water, ecological and agricultural security in arid regions, but is not well known in arid oasis–deserts. This research identified groundwater recharge processes and assessed the impact of anthropogenic activities on groundwater hydrochemical evolution in a representative oasis–desert in Central Asia using stable isotopic indicators (δ2H and δ18O) and hydrochemical data. Results indicated that the normalized difference vegetation index (NDVI) and cultivated land area exhibited a significant increasing trend during 2000 to 2020. Stable water isotopes and the ionic composition of both groundwater and surface water exhibited obviously spatial heterogeneity and seasonal variation. Generally, the spatial distribution pattern of major dissolved ions for shallow groundwater was consistent and increased along the groundwater flow direction from midstream to downstream. Surface water and groundwater were both characterized by higher δ18O and total dissolved solids (TDS) in the non-flood season than those in the flood season. Shallow groundwater had a larger seasonal variation in δ18O and TDS than other water components. Groundwater level in monitored wells generally presented a decreasing trend from 2018 to 2021, accompanied by a decrease in phreatic water TDS and NDVI in the desert area. Gypsum dissolution and weathering of silicate and halite had an important role in forming groundwater hydrochemistry. Anthropogenic activities significantly affected groundwater hydrochemistry and recharge. Shallow groundwater received its primary recharge from surface water and lateral groundwater flow, constituting 73% and 27% of the total recharge, respectively. Agricultural activities and groundwater overexploitation were the main factors for variations in groundwater level and quality in the oasis area, and directly affected groundwater and natural vegetation in the desert area. The results would be helpful to deeply understand groundwater hydrochemical evolution and cycling, and beneficial for groundwater efficient utilization and desert ecosystem restoration in the arid areas.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Tianshan Innovative Team Project

National Natural Science Foundation of China

Talent Program “Tianchi Talent (Young Doctor)” in Xinjiang Uygur Autonomous Region

Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone

Youth Innovation Promotion Association of CAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3