Enhanced Marine Biodegradation of Polycaprolactone through Incorporation of Mucus Bubble Powder from Violet Sea Snail as Protein Fillers

Author:

Yoshida Koh1,Teramoto Sayaka2,Gong Jin1ORCID,Kobayashi Yutaka1ORCID,Ito Hiroshi1ORCID

Affiliation:

1. Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan

2. Aquaculture Division, Iwate Fisheries Technology Center, 3-75-3 Heita, Kamaishi 026-0001, Iwate, Japan

Abstract

Microplastics’ spreading in the ocean is currently causing significant damage to organisms and ecosystems around the world. To address this oceanic issue, there is a current focus on marine degradable plastics. Polycaprolactone (PCL) is a marine degradable plastic that is attracting attention. To further improve the biodegradability of PCL, we selected a completely new protein that has not been used before as a functional filler to incorporate it into PCL, aiming to develop an environmentally friendly biocomposite material. This novel protein is derived from the mucus bubbles of the violet sea snail (VSS, Janthina globosa), which is a strong bio-derived material that is 100% degradable in the sea environment by microorganisms. Two types of PCL/bubble composites, PCL/b1 and PCL/b5, were prepared with mass ratios of PCL to bubble powder of 99:1 and 95:5, respectively. We investigated the thermal properties, mechanical properties, biodegradability, surface structure, and crystal structure of the developed PCL/bubble composites. The maximum biochemical oxygen demand (BOD) degradation for PCL/b5 reached 96%, 1.74 times that of pure PCL (≈55%), clearly indicating that the addition of protein fillers significantly enhanced the biodegradability of PCL. The surface morphology observation results through scanning electron microscopy (SEM) definitely confirmed the occurrence of degradation, and it was found that PCL/b5 underwent more significant degradation compared to pure PCL. The water contact angle measurement results exhibited that all sheets were hydrophobic (water contact angle > 90°) before the BOD test and showed the changes in surface structure after the BOD test due to the newly generated indentations on the surface, which led to an increase in surface toughness and, consequently, an increase in surface hydrophobility. A crystal structure analysis by wide-angle X-ray scattering (WAXS) discovered that the amorphous regions were decomposed first during the BOD test, and more amorphous regions were decomposed in PCL/b5 than in PCL, owing to the addition of the bubble protein fillers from the VSS. The differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA) results suggested that the addition of mucus bubble protein fillers had only a slight impact on the thermal properties of PCL. In terms of mechanical properties, compared to pure PCL, the mucus-bubble-filler-added composites PCL/b1 and PCL/b5 exhibited slightly decreased values. Although the biodegradability of PCL was significantly improved by adding the protein fillers from mucus bubbles of the VSS, enhancing the mechanical properties at the same time poses the next challenging issue.

Funder

NEDO [Moonshot R&D–Millennia Program]

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3