Biodegradation Mechanism of Polystyrene by Mealworms (Tenebrio molitor) and Nutrients Influencing Their Growth

Author:

Nakatani Hisayuki12ORCID,Yamaura Yuto1,Mizuno Yuma1,Motokucho Suguru12,Dao Anh Thi Ngoc1,Nakahara Hiroyuki3

Affiliation:

1. Graduate School of Integrated Science and Technology Chemistry and Materials Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

2. Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

3. Graduate School of Integrated Science and Technology Smart City Design Engineering Program, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract

A degradation mechanism of polystyrene (PS) in mealworms reared on expanded PS (EPS) was investigated by its decrease in molecular weight and change in chemical structure. A 33% decrease in molecular weight was observed for the digested PS in the frass after 1 week of feeding to mealworms. The FT-IR and py-GC/MS spectra of the digested PS showed radical oxidative reactions taking place in the mealworm body. The presence of hydroperoxide, alcohol and phenol groups was confirmed, and dimer fragments of styrene with quinone and phenol groups were obtained. The decrease in molecular weight and the alternation of benzene rings indicated that autoxidation and quinonization via phenolic intermediates occurred simultaneously in the mealworm body. The survival rate of mealworms reared on EPS was higher than that of starved worms, indicating that EPS was a nutrient source. However, no weight gain was observed in mealworms fed EPS alone. Comparison with the mixed diets with bran or urethane foams (PU) indicated that protein, phosphorus and magnesium components absent from EPS were required for mealworm growth.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3