Theoretical Analysis of Light-Actuated Self-Sliding Mass on a Circular Track Facilitated by a Liquid Crystal Elastomer Fiber

Author:

Wei Lu1,Hu Junjie1,Wang Jiale1,Wu Haiyang1,Li Kai1ORCID

Affiliation:

1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

Abstract

Self-vibrating systems obtaining energy from their surroundings to sustain motion can offer great potential in micro-robots, biomedicine, radar systems, and amusement equipment owing to their adaptability, efficiency, and sustainability. However, there is a growing need for simpler, faster-responding, and easier-to-control systems. In the study, we theoretically present an advanced light-actuated liquid crystal elastomer (LCE) fiber–mass system which can initiate self-sliding motion along a rigid circular track under constant light exposure. Based on an LCE dynamic model and the theorem of angular momentum, the equations for dynamic control of the system are deduced to investigate the dynamic behavior of self-sliding. Numerical analyses show that the theoretical LCE fiber–mass system operates in two distinct states: a static state and a self-sliding state. The impact of various dimensionless variables on the self-sliding amplitude and frequency is further investigated, specifically considering variables like light intensity, initial tangential velocity, the angle of the non-illuminated zone, and the inherent properties of the LCE material. For every increment of π/180 in the amplitude, the elastic coefficient increases by 0.25% and the angle of the non-illuminated zone by 1.63%, while the light intensity contributes to a 20.88% increase. Our findings reveal that, under constant light exposure, the mass element exhibits a robust self-sliding response, indicating its potential for use in energy harvesting and other applications that require sustained periodic motion. Additionally, this system can be extended to other non-circular curved tracks, highlighting its adaptability and versatility.

Funder

University Natural Science Research Project of Anhui Province

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Housing and Urban-Rural Development Science and Technology Project of Anhui Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3