Abstract
Abstract
Artificial muscles that can reproduce the functions and biomimetic motions of natural muscles are widely used to construct soft robots with applications in various fields. However, it is still challenging to develop stimuli-responsive artificial muscles with multiple-mode actuation. Inspired by the forearm muscles, we propose a new type of stimuli-responsive artificial muscles with multiple-mode actuation using liquid crystal elastomers (LCEs), named FILAMs (forearm muscle-inspired LCE-based artificial muscles). The proposed FILAMs consist of active LCE driving units, a passive silicone rubber flexible skeleton and two quick connectors. By selectively actuating different types of LCE driving units, the FILAMs can achieve multiple-mode actuation, such as twisting, bending, combined twisting and bending. We introduce prototypical designs for the FILAMs and demonstrate that they can be used as ‘building blocks’ to reconfigure different soft robots. Three kinds of soft robots are constructed to show extensive applications through the cooperation of a combination FILAMs, i.e. a soft assembly robot, a soft crawling robot, and a soft flexible wrist.
Funder
Zhejiang Provincial Natural Science Foundation of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献