Abstract
Nowadays, the usage of thermal insulation materials is widespread not only in the building sector but also in the vehicle industry. The application of fibrous or loose-fill insulation materials like glass wool or mineral wool as well as aerogel is well known. Aerogel-based materials are among the best solid materials for thermal insulation available today; they are prepared through a sol–gel process. For building walls, the glass-fiber-enhanced types are the frequently used ones. They are prepared by adding the liquid–solid solution to the fibrous batting, which is called a sol–gel process. In the present paper, the changes in the most important building physical properties of aerogel blankets after thermal annealing are presented. The samples were subjected to isochronal heat treatments from 70 to 210 °C for 24 h. The changes in the thermal conductivity were followed by Holometrix Lambda heat flow meter, and differential scanning calorimetry results were also recorded. From the measured values, together with the densities, the most important thermal properties were calculated, such as thermal resistance, diffusivity, effusivity (heat absorption), and thermal inertia. In this paper, we attempt to clarify the role played by thermal annealing in the transient thermal properties of aerogel materials. Besides presenting the measurement results, a theoretical background is given. The investigations of not only the steady-state but also the transient thermal parameters of the materials are momentous at the design stage.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献