Abstract
The paper presents the application of recurrent LSTM neural networks for short-time load forecasting in the Polish Power System (PPS) and a small region of a power system in Central Poland. The objective of the present work was to develop an efficient and accurate method of forecasting the 24-h pattern of power load with a 1-h and 24-h horizon. LSTM showed effectiveness in predicting the irregular trends in time series. The final forecast is estimated using an ensemble consisted of five independent predictions. Numerical experiments proved the superiority of the ensemble above single predictor resulting in a reduction of the MAPE the RMSE error by more than 6% in both forecasting tasks.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献