Abstract
Vehicular ad-hoc Networks (VANETs) are recognized as a cornerstone of Intelligent Transportation Systems (ITS) to enable the exchange of information among vehicles, which is crucial for the provision of safety-related and entertainment applications. However, practical useful realizations of VANETs are still missing, mainly because of the elevated costs and the lack of a final standardization. In this regard, the feasibility of using smartphones as nodes in VANETs has been explored focusing on small-scale deployments to mainly validate single-hop communication capabilities. Moreover, existing smartphone-based platforms do not consider two crucial requirements in VANETs, namely, multi-hop communication and the provision of security services in the message dissemination process. Furthermore, the problem of securing message dissemination in VANETs is generally analyzed through simulation tools, while performance evaluations on smart devices have not been reported so far. In this paper, we aim to fill this void by designing a fully on-device platform for secure multi-hop message dissemination. We address the multi-hop nature of message dissemination in VANETs by integrating a location-based protocol that enables the selection of relay nodes and retransmissions criteria. As a main distinction, the platform incorporates a novel certificateless cryptographic scheme for ensuring data integrity and nodes’ authentication, suitable for VANETs lacking of infrastructure.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献