Proposed Supercluster-Based UMBBFS Routing Protocol for Emergency Message Dissemination in Edge-RSU for 5G VANET

Author:

Albeyar Maath A.1,Smaoui Ikram1,Mnif Hassene2,Alani Sameer3ORCID

Affiliation:

1. LETI Laboratory, University of Sfax, Sfax 3000, Tunisia

2. LETI Laboratory, ENIS National School of Electronics and Telecommunications of Sfax, Sfax 3000, Tunisia

3. Computer Center, University of Anbar, Anbar 55431, Iraq

Abstract

Vehicular ad hoc networks (VANETs) can bolster road safety through the proactive dissemination of emergency messages (EMs) among vehicles, effectively reducing the occurrence of traffic-related accidents. It is difficult to transmit EMs quickly and reliably due to the high-speed mobility of VANET and the attenuation of the wireless signal. However, poor network design and high vehicle mobility are the two most difficult problems that affect VANET’s network performance. The real-time traffic situation and network dependability will also be significantly impacted by route selection and message delivery. Many of the current works have undergone studies focused on forwarder selection and message transmission to address these problems. However, these earlier approaches, while effective in forwarder selection and routing, have overlooked the critical aspects of communication overhead and excessive energy consumption, resulting in transmission delays. To address the prevailing challenges, the proposed solutions use edge computing to process and analyze data locally from surrounding cars and infrastructure. EDGE-RSUs are positioned by the side of the road. In intelligent transportation systems, this lowers latency and enhances real-time decision-making by employing proficient forwarder selection techniques and optimizing the dissemination of EMs. In the context of 5G-enabled VANET, this paper introduces a novel routing protocol, namely, the supercluster-based urban multi-hop broadcast and best forwarder selection protocol (UMB-BFS). The improved twin delay deep deterministic policy gradient (IT3DPG) method is used to select the target region for emergency message distribution after route selection. Clustering is conducted using modified density peak clustering (MDPC). Improved firefly optimization (IFO) is used for optimal path selection. In this way, all emergency messages are quickly disseminated to multiple directions and also manage the traffic in VANET. Finally, we plotted graphs for the following metrics: throughput (3.9 kbps), end-to-end delay (70), coverage (90%), packet delivery ratio (98%), packet received (12.75 k), and transmission delay (57 ms). Our approach’s performance is examined using numerical analysis, demonstrating that it performs better than the current methodologies across all measures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3