Precise Determination of Eu Concentration in Coal and Sedimentary Rock Samples Using High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS)

Author:

Zhao Shumao12,Liu Jingjing12,Jia Rongkun12,Feng Jiawei12,Teng Kaiyan12,Han Qiuchan12,Shang Niande12

Affiliation:

1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Europium (Eu) in coal and sedimentary rocks has important mineral resource potential as well as being a crucial parameter in geochemical studies that can represent changes in the depositional environment during coal deposition and identify the depositional source region. Therefore, it is essential to realize the precise measurement of Eu in coal as this could be a useful parameter for paleoenvironmental reconstruction studies and the exploration of mineral resources. During inductively coupled plasma mass spectrometry (ICP-MS) analysis, polyatomic ions of Ba may interfere with Eu, causing the observed value to be higher than the actual value. This paper develops a new approach for Eu determination by using a high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). The mass spectral interference and correction of Eu in the coal and sedimentary rock samples at low, medium, and high resolutions were investigated. The results showed that in the high-resolution mode (resolution = 10,000 amu), the interference of polyatomic ions of Ba could be distinguished from Eu; hence, Eu was determined under this circumstance. Under the optimal experimental circumstances, the detection limit was 0.006 μg/mL, the relative standard deviation was 0.80%–1.22%, and the linear correlation coefficient of the standard curve was over 0.9999. The recoveries of the 103Rh internal standard solution ranged from 94.41% to 100.10%. This method was verified using standard reference materials and selected samples, which demonstrated its high sensitivity, accuracy, and reliability, and a low detection limit, making it appropriate for detecting Eu in samples of coal and sedimentary rocks.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3