Comparison of the Application of High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and Collision/Reaction Cell Technology of Inductively Coupled Plasma Mass Spectrometry (ICP-CCT-MS) in the Determination of Selenium in Coal-Bearing Strata

Author:

Zhao Shumao12,Jia Rongkun12,Han Qiuchan12,Shang Niande12,Teng Kaiyan12,Feng Jiawei12

Affiliation:

1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Selenium, a trace element of significant importance for human health and the environment, can be introduced into the environment through coal combustion. Accurate determination of selenium in coal and coal-bearing strata is essential for implementing effective management strategies and control measures to minimize potential risks to human health and the environment. This study introduces an improved approach for the determination of 77Se in the medium resolution mode using HR-ICP-MS, effectively separating interference from doubly charged ions and enabling precise determination of selenium in coal-bearing strata. The relative errors of the standard reference samples obtained by HR-ICP-MS are between 0.65% and 6.33%, comparing to that of ICP-CCT-MS (1.58%–17.27%), prove the reliability of this method. Additionally, the X (bar)—S control charts obtained from HR-ICP-MS compared to ICP-CCT-MS demonstrate the superior stability of HR-ICP-MS in continuous determination. Consequently, though ICP-CCT-MS has better instrumental stability reflected through the internal standard recovery (ICP-CCT-MS:104.81%; HR-ICP-MS:80.54%), HR-ICP-MS is recommended as the preferred method for selenium determination in coal-bearing strata because of its high accuracy and good stability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3