Effects of Reversed Shock Waves on Operation Mode in H2/O2 Rotating Detonation Chambers

Author:

Chen Yanliang,Liu Xiangyang,Wang Jianping

Abstract

Operation modes are an important topic in the research of Rotating Detonation Chamber (RDC) as it can affect the stability of RDC. However, they have not been discussed in detail due to the limitation of measurement means in experiments. The aim of this research is to investigate the mechanism of different operation modes by numerical simulation. In this paper, a numerical simulation for RDCs with separate injectors is carried out. Different operation modes and mode switching are analyzed. There is a series of reversed shock waves in the flow field. It was found that they have great effects on operation mode and mode switching in RDCs. A reversed shock wave can transit into a detonation wave after passing through isolated fresh gas region where fresh gas and burnt gas distribute alternatively. This shock-to-detonation transition (SDT) phenomenon will influence the ignition process, contra-rotating waves mode and mode switching in RDCs. SDT makes the number of detonation wave increases, resulting in multi-wave mode with one ignition. Moreover, quenching of detonation waves after collision and SDT after passing through isolated fresh gas region are the mechanism of contra-rotating waves mode in RDCs with separate injectors. In addition, when the inlet total temperature increases, a shock wave is easier to transit into a detonation wave. The distance that a shock wave travels before SDT decreases when temperature increases. This will result in mode switching. Therefore, SDT determines that there is a lower bound of detonation wave number.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3