Abstract
Recently, with the development of detonation-based propulsion systems, scholars have begun to study how to perform mode control on the rotating detonation combustor (RDC). It is important to figure out the influence of operation mode transition on the RDC. Actually, the essential of different modes is the different multi-wave structures. In this study, two-dimensional numerical simulations of the RDC are conducted to study the multi-wave effect on the stability and performance of the RDC. A uniform inlet condition is adopted in simulations to eliminate the impact of discrepancy mass flow rates, and a mode-locked ignition method is used to induce RDC flow fields with different detonation wave numbers. It is found that the flow field stability and outlet uniformity are improved with increasing detonation counts, and the energy proportion in the flow field is little affected by the multi-wave structure. However, the increase in detonation number will cause a reduction of the mass-averaged total pressure ratio at the exit. Underlying relationship between the unsteady flow field and the total pressure gain is discussed. The total pressure gain is directly linked with the non-uniformity of the circumferential flow field. Then, by utilizing particle trace, the envelope of the thermodynamic cycle is illustrated and the pseudo-thermal efficiency of each case is given. The result implies that the wave number has hardly effect on the thermal efficiency of the combustion chamber. By summarizing the perimeter, axial length, and wave number in the combustor, parameter ξ is carried out and its effects on the uniformity and total pressure ratio in the RDC are concluded.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献