An Efficient UD Factorization Implementation of Kalman Filter for RTK Based on Equivalent Principle

Author:

Liu Jian,Zhang BingORCID,Liu Tong,Xu Guochang,Ji Yuanfa,Sun Mengfei,Nie Wenfeng,He Yufang

Abstract

Real-time kinematic (RTK) is a technique frequently utilized to provide real-time highly precise positioning services for mobile Internet-of-Things (IoT)-embedded terminals from intelligence appliances and smartphones to autonomous drones and self-driving vehicles. To fully utilize hardware resources, the internal GNSS chips or modules equipped in IoT terminals should satisfy the traits of energy efficiency and low computational complexity. As the number of global navigation satellite system (GNSS) increases, the continuous accumulation of high-dimensional rounding errors, the rough system model, and seriously distorted observations will result in divergence and considerable processing burden in the conventional Kalman filter (KF) process. Computational efficiency is significant in the reduction in the power consumption and intensifies the positioning performance of GNSS receivers. Here, a new filter strategy based on UD factorization, where U stands for the unit upper-triangular factor and D indicates the diagonal factor, is proposed for RTK positioning to enhance the numerical stability and reduce the computational effort. The equivalent principle was applied to turn double-difference (DD) observations into zero-difference (ZD) observations. Then, the UD-factorization-based Kalman filter (UD-KF) is proposed as a way to sequentially provide accurate real-time estimations of the filter states and variance–covariance (VC) matrix. Both static and dynamic tests were carried out with single-frequency data from a GPS to evaluate the performance of UD-KF. The results of the zero-baseline test show that UD-KF can obtain smaller RMS of the estimated parameters as the noise of DD observations was twice that of the ZD observations. A short baseline test showed that, compared to the regular filter approach with DD observations, UD-KF achieved a shorter computation time with a higher data utilization rate for both filtering and fixing stages, with an average improvement of 32% and 18%. Finally, a dynamic test showed that the UD-KF can avoid the undesirable effect of satellite changes. Therefore, compared to KF with DD observations, the UD-KF with equivalent ZD observations can enhance the robustness as well as improve the positioning accuracy of RTK positioning.

Funder

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3