A Robust Nonlinear Filter Strategy Based on Maximum Correntropy Criterion for Multi-GNSS and Dual-Frequency RTK

Author:

Liu Jian,Liu Tong,Ji Yuanfa,Sun Mengfei,Lyu Mingyang,Xu BingORCID,Lu Zhiping,Xu Guochang

Abstract

The multi-constellation, multi-frequency Global Navigation Satellite System (GNSS) has the potential to empower precise real-time kinematics (RTK) with higher accuracy, availability, continuity, and integrity. However, to enhance the robustness of the nonlinear filter, both the measurement quality and efficiency of parameter estimation need consideration, especially for GNSS challenging or denied environments where outliers and non-Gaussian noise exist. This study proposes a nonlinear Kalman filter with adaptive kernel bandwidth (KBW) based on the maximum correntropy criterion (AMC-KF). The proposed method excavates data features of higher order moments to enhance the robustness against noise. With the wide-lane and ionosphere-free combination, a dual frequency (DF) data-aided ambiguity resolution (AR) method is also derived to improve the measurement quality. The filtering strategy based on the DF data-aided AR method and AMC-KF is applied for multi-GNSS and DF RTK. To evaluate the proposed method, the short baseline test, long baseline test, and triangle network closure test are conducted with DF data from GPS and Galileo. For the short baseline test, the proposed filter strategy could improve the positioning accuracy by more than 30% on E and N components, and 60% on U. The superiority of the proposed adaptive KBW is validated both in efficiency and accuracy. The triangle network closure test shows that the proposed DF data-aided AR method could achieve a success rate of more than 93%. For the long baseline test, the integration of the above methods gains more than 40% positioning accuracy improvement on ENU components. This study shows that the proposed nonlinear strategy could enhance both robustness and accuracy without the assistance of external sensors and is applicable for multi-GNSS and dual-frequency RTK.

Funder

the Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3