Abstract
The multi-constellation, multi-frequency Global Navigation Satellite System (GNSS) has the potential to empower precise real-time kinematics (RTK) with higher accuracy, availability, continuity, and integrity. However, to enhance the robustness of the nonlinear filter, both the measurement quality and efficiency of parameter estimation need consideration, especially for GNSS challenging or denied environments where outliers and non-Gaussian noise exist. This study proposes a nonlinear Kalman filter with adaptive kernel bandwidth (KBW) based on the maximum correntropy criterion (AMC-KF). The proposed method excavates data features of higher order moments to enhance the robustness against noise. With the wide-lane and ionosphere-free combination, a dual frequency (DF) data-aided ambiguity resolution (AR) method is also derived to improve the measurement quality. The filtering strategy based on the DF data-aided AR method and AMC-KF is applied for multi-GNSS and DF RTK. To evaluate the proposed method, the short baseline test, long baseline test, and triangle network closure test are conducted with DF data from GPS and Galileo. For the short baseline test, the proposed filter strategy could improve the positioning accuracy by more than 30% on E and N components, and 60% on U. The superiority of the proposed adaptive KBW is validated both in efficiency and accuracy. The triangle network closure test shows that the proposed DF data-aided AR method could achieve a success rate of more than 93%. For the long baseline test, the integration of the above methods gains more than 40% positioning accuracy improvement on ENU components. This study shows that the proposed nonlinear strategy could enhance both robustness and accuracy without the assistance of external sensors and is applicable for multi-GNSS and dual-frequency RTK.
Funder
the Guangdong Basic and Applied Basic Research Foundation
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献