A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits

Author:

Stoddart Jaz,de Almeida Danilo Roberti Alves,Silva Carlos AlbertoORCID,Görgens Eric BastosORCID,Keller Michael,Valbuena RubenORCID

Abstract

Current LiDAR-based methods for detecting forest change use a host of statistically selected variables which typically lack a biological link with the characteristics of the ecosystem. Consensus of the literature indicates that many authors use LiDAR to derive ecosystem morphological traits (EMTs)—namely, vegetation height, vegetation cover, and vertical structural complexity—to identify small-scale changes in forest ecosystems. Here, we provide a conceptual, biological model for predicting forest aboveground biomass (AGB) change based on EMTs. We show that through use of a multitemporal dataset it is possible to not only identify losses caused by logging in the period between data collection but also identify regions of regrowth from prior logging using EMTs. This sensitivity to the change in forest dynamics was the criterion by which LiDAR metrics were selected as proxies for each EMT. For vegetation height, results showed that the top-of-canopy height derived from a canopy height model was more sensitive to logging than the average or high percentile of raw LiDAR height distributions. For vegetation cover metrics, lower height thresholds for fractional cover calculations were more sensitive to selective logging and the regeneration of understory. For describing the structural complexity in the vertical profile, the Gini coefficient was found to be superior to foliage height diversity for detecting the dynamics occurring over the years after logging. The subsequent conceptual model for AGB estimation obtained a level of accuracy which was comparable to a model that was statistically optimised for that same area. We argue that a widespread adoption of an EMT-based conceptual approach would improve the transferability and comparability of LiDAR models for AGB worldwide.

Funder

KESS2

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3