Remote sensing of forest degradation: a review

Author:

Gao YanORCID,Skutsch MargaretORCID,Paneque-Gálvez JaimeORCID,Ghilardi AdrianORCID

Abstract

Abstract Forest degradation affects forest structure, composition and diversity, carbon stocks, functionality and ecosystem processes. It is known to contribute significantly to global carbon emissions, but there is uncertainty about the relative size of these emissions. This is largely because while deforestation, or long-term forest clearance, has been successfully monitored using remote sensing (RS) technology, there are more difficulties in using RS to quantify forest degradation, in which the area remains as forest, but with an altered structure, composition and function. A major challenge in estimating emissions from forest degradation is that in addition to identifying the areas affected, the amount of biomass loss over time in a given area must be estimated. Contributory challenges to mapping, monitoring and quantifying forest degradation include the complexity of the concept of degradation, limitations in the spatial and temporal resolution of RS sensors, and the inherent complexity of detecting degradation caused by different disturbance processes and forest uses. We take the innovative approach of dividing the studies reviewed by the specific type of forest disturbance that is being monitored (selective logging, fires, shifting cultivation and fuelwood extraction etc.), since these different activities will result in different signatures in the canopy and thus may determine the type of RS technology that may best be applied.

Funder

Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica

Consejo Nacional de Ciencia y Tecnología

Consejo Nacional de Ciencia y Tecnología (CONACYT) Catedra Program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3