An Improved Sea Ice Classification Algorithm with Gaofen-3 Dual-Polarization SAR Data Based on Deep Convolutional Neural Networks

Author:

Zhang Jiande,Zhang Wenyi,Hu Yuxin,Chu Qingwei,Liu Lei

Abstract

The distribution of sea ice is one of the major safety hazards for sea navigation. As human activities in polar regions become more frequent, monitoring and forecasting of sea ice are of great significance. In this paper, we use SAR data from the C-band synthetic aperture radar (SAR) Gaofen-3 satellite in the dual-polarization (VV, VH) fine strip II (FSII) mode of operation to study the Arctic sea ice classification in winter. SAR data we use were taken in the western Arctic Ocean from January to February 2020. We classify the sea ice into four categories, namely new ice (NI), thin first-year ice (tI), thick first-year ice (TI), and old ice (OI), by referring to the ice maps provided by the Canadian Ice Service (CIS). Then, we use the deep learning model MobileNetV3 as the backbone network, input samples of different sizes, and combine the backbone network with multiscale feature fusion methods to build a deep learning model called Multiscale MobileNet (MSMN). Dual-polarization SAR data are used to synthesize pseudocolor images and produce samples of sizes 16 × 16 × 3, 32 × 32 × 3, and 64 × 64 × 3 as input. Ultimately, MSMN can reach over 95% classification accuracy on testing SAR sea ice images. The classification results using only VV polarization or VH polarization data are tested, and it is found that using dual-polarization data could improve the classification accuracy by 10.05% and 9.35%, respectively. When other classification models are trained using the training data from this paper for comparison, the accuracy of MSMN is 4.86% and 1.84% higher on average than that of the model built using convolutional neural networks (CNNs) and ResNet18 model, respectively.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3