Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data

Author:

Wang Peng12ORCID,Zhang Xi12,Shi Lijian3ORCID,Liu Meijie4,Liu Genwang2,Cao Chenghui2,Wang Ruifu1ORCID

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

2. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

3. National Satellite Ocean Application Service, Beijing 100081, China

4. College of Physics, Qingdao University, Qingdao 266071, China

Abstract

Sea-ice mapping using Synthetic Aperture Radar (SAR) in the melt season poses challenges, primarily due to meltwater complicating the distinguishability of sea-ice types. In response to this issue, this study introduces a novel method for classifying sea ice during the Bohai Sea’s melting period. The method categorizes sea ice into five types: open water (OW), gray ice (Gi), melting gray ice (GiW), gray–white Ice (Gw), and melting gray–white Ice (GwW). To achieve this classification, 51 polarimetric features are extracted from L-, S-, and C-band PolSAR data using various polarization decomposition methods. This study assesses the separability of these features among different combinations of sea-ice type by calculating the Euclidean distance (ED). The Support Vector Machine (SVM) classifier, when employed with single-frequency polarimetric feature sets, achieves the highest accuracy for OW and Gi in the C-band, GiW in the S-band, and Gw and GwW in the L-band. Remarkably, the C-band features exhibit the overall highest accuracy when compared to the L-band and S-band. Furthermore, employing a multi-dimensional polarimetric feature set significantly improves classification accuracy to 94.55%, representing a substantial enhancement of 9% to 22% compared to single-frequency classification. Benefiting from the performance advantages of Random Forest (RF) classifiers in handling large datasets, RF classifiers achieve the highest classification accuracy of 95.84%. The optimal multi-dimensional feature composition includes the following: L-band: SE, SEI, α¯, Span; S-band: SEI, SE, Span, PV-Freeman, λ1, λ2; C-band: SE, SEI, Span, λ3, PV-Freeman. The results of this study provide a reliable new method for future sea-ice monitoring during the melting season.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shandong joint fund of National Natural Science Foundation of China

Ministry of Science and Technology of China and the European Space Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3