Anomalous Properties of the Dislocation-Free Interface between Si(111) Substrate and 3C-SiC(111) Epitaxial Layer

Author:

Kukushkin Sergey A.ORCID,Osipov Andrey V.ORCID

Abstract

Thin films of single-crystal silicon carbide of cubic polytype with a thickness of 40–100 nm, which were grown from the silicon substrate material by the method of coordinated substitution of atoms by a chemical reaction of silicon with carbon monoxide CO gas, have been studied by spectral ellipsometry in the photon energy range of 0.5–9.3 eV. It has been found that a thin intermediate layer with the dielectric constant corresponding to a semimetal is formed at the 3C-SiC(111)/Si(111) interface. The properties of this interface corresponding to the minimum energy have been calculated using quantum chemistry methods. It has turned out that silicon atoms from the substrate are attracted to the interface located on the side of the silicon carbide (SiC) film. The symmetry group of the entire system corresponds to P3m1. The calculations have shown that Si atoms in silicon carbide at the interface, which are the most distant from the Si atoms of the substrate and do not form a chemical bond with them (there are only 12% of them), provide a sharp peak in the density of electronic states near the Fermi energy. As a result, the interface acquires semimetal properties that fully correspond to the ellipsometry data.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3