Abstract
Thin films of single-crystal silicon carbide of cubic polytype with a thickness of 40–100 nm, which were grown from the silicon substrate material by the method of coordinated substitution of atoms by a chemical reaction of silicon with carbon monoxide CO gas, have been studied by spectral ellipsometry in the photon energy range of 0.5–9.3 eV. It has been found that a thin intermediate layer with the dielectric constant corresponding to a semimetal is formed at the 3C-SiC(111)/Si(111) interface. The properties of this interface corresponding to the minimum energy have been calculated using quantum chemistry methods. It has turned out that silicon atoms from the substrate are attracted to the interface located on the side of the silicon carbide (SiC) film. The symmetry group of the entire system corresponds to P3m1. The calculations have shown that Si atoms in silicon carbide at the interface, which are the most distant from the Si atoms of the substrate and do not form a chemical bond with them (there are only 12% of them), provide a sharp peak in the density of electronic states near the Fermi energy. As a result, the interface acquires semimetal properties that fully correspond to the ellipsometry data.
Funder
Russian Science Foundation
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献