Reducing Noise, Artifacts and Interference in Single-Channel EMG Signals: A Review

Author:

Boyer Marianne12ORCID,Bouyer Laurent23ORCID,Roy Jean-Sébastien23ORCID,Campeau-Lecours Alexandre12ORCID

Affiliation:

1. Department of Mechanical Engineering, Université Laval, Québec, QC G1V 0A6, Canada

2. Centre for Interdisciplinary Research in Rehabilitation and Social Integration, CIUSSS de la Capitale-Nationale, Québec, QC G1M 2S8, Canada

3. Department of Rehabilitation, Université Laval, Québec, QC G1 V0A, Canada

Abstract

Electromyography (EMG) is gaining importance in many research and clinical applications, including muscle fatigue detection, control of robotic mechanisms and prostheses, clinical diagnosis of neuromuscular diseases and quantification of force. However, EMG signals can be contaminated by various types of noise, interference and artifacts, leading to potential data misinterpretation. Even assuming best practices, the acquired signal may still contain contaminants. The aim of this paper is to review methods employed to reduce the contamination of single channel EMG signals. Specifically, we focus on methods which enable a full reconstruction of the EMG signal without loss of information. This includes subtraction methods used in the time domain, denoising methods performed after the signal decomposition and hybrid approaches that combine multiple methods. Finally, this paper provides a discussion on the suitability of the individual methods based on the type of contaminant(s) present in the signal and the specific requirements of the application.

Funder

FRQS

Natural Sciences and Engineering Research Council

INTER

IRSST

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3