Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions

Author:

Abbas Ahmed Mahmoud,Seddik Mohamed Abdelmoneim,Gahory Abd-Allah,Salaheldin SabriORCID,Soliman Wagdi SaberORCID

Abstract

This experiment was conducted to examine the influence of drying methods on the essential oil of chamomile (Matricaria chamomilla L.) and its chemical composition. Chamomile flower heads were dried using five different methods: sunlight for 72 h; shade for 1 week; oven at 40 °C for 72 h; solar dryer for 72 h; and microwave for 5 min. Drying methods had slight and nonsignificant impacts on dry biomass of flower heads. The highest percentages of oil in flowers (0.35–0.50%) were observed after solar-drying methods, and the lowest percentage of oil was found after microwave drying (0.24–0.33%). Drying methods significantly influenced the number of identified compounds. The maximum was identified after solar drying (21 compounds), while the lowest was identified after microwave drying (13 compounds), which revealed the solar ability to preserve compounds in contrast to microwave, which crushed the compounds. Major compounds were α-bisabolol oxide A (33.0–50.5%), (Z)-tonghaosu (10.0–18.7%), α-bisabolol oxide B (8.2–15.4%), α-bisabolone oxide A (5.4–14.6%), and chamazulene (1.9–5.2%) of essential oil. Drying methods clearly affected major compounds’ content as the lowest α-bisabolol oxide A was after sun drying, and the lowest α-bisabolol oxide B was after solar drying. (Z)-tonghaosu increased during drying compared to fresh flowers. Solar drying maintained higher chamazulene content (3.0%) compared to other drying methods. The results of this study suggest that drying under the shady conditions preserved chemical composition of essential oil with higher α-bisabolol content compared to other drying methods.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3