Abstract
With progressive technological advancements, the time for electric vehicles (EVs) and unmanned aerial vehicles (UAVs) has finally arrived for the masses. However, intelligent transportation systems need to develop appropriate protocols that enable swift predictive communication among these battery-powered devices. In this paper, we highlight the challenges in message routing in a unified paradigm of electric and flying vehicles (EnFVs). We innovate over the existing routing scheme by considering multi-objective EnFVs message routing using a novel modified genetics algorithm. The proposed scheme identifies all possible solutions, outlines the Pareto-front, and considers the optimal solution for the best route. Moreover, the reliability, data rate, and residual energy of vehicles are considered to achieve high communication gains. An exhaustive evaluation of the proposed and three existing schemes using a New York City real geographical trace shows that the proposed scheme outperforms existing solutions and achieves a 90%+ packet delivery ratio, longer connectivity time, shortest average hop distance, and efficient energy consumption.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献