Machine-Learning-Based Fine Tuning of Input Signals for Mechano-Tactile Display

Author:

Yamanaka Shuto,Nagatomo Tatsuho,Hiraki Takefumi,Ishizuka HirokiORCID,Miki NorihisaORCID

Abstract

Deducing the input signal for a tactile display to present the target surface (i.e., solving the inverse problem for tactile displays) is challenging. We proposed the encoding and presentation (EP) method in our prior work, where we encoded the target surface by scanning it using an array of piezoelectric devices (encoding) and then drove the piezoelectric devices using the obtained signals to display the surface (presentation). The EP method reproduced the target texture with an accuracy of over 80% for the five samples tested, which we refer to as replicability. Machine learning is a promising method for solving inverse problems. In this study, we designed a neural network to connect the subjective evaluation of tactile sensation and the input signals to a display; these signals are described as time-domain waveforms. First, participants were asked to touch the surface presented by the mechano-tactile display based on the encoded data from the EP method. Then, the participants recorded the similarity of the surface compared to five material samples, which were used as the input. The encoded data for the material samples were used as the output to create a dataset of 500 vectors. By training a multilayer perceptron with the dataset, we deduced new inputs for the display. The results indicate that using machine learning for fine tuning leads to significantly better accuracy in deducing the input compared to that achieved using the EP method alone. The proposed method is therefore considered a good solution for the inverse problem for tactile displays.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding Materialized Models for Model Reuse;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3