Evolutionary Overview and Prediction of Themes in the Field of Land Degradation

Author:

Lu Xinhai,Zhang YanweiORCID,Lin ChaoranORCID,Wu Feng

Abstract

Land degradation has become one of the major global environmental problems threatening human well-being. Whether degraded land can be restored has a profound effect on the achievement of the 2030 UN Sustainable Development Goals. Therefore, the ways by which to identify the current research status and potential research topics in the massive scientific literature data in the field of land degradation is a crucial issue for scientific research institutions in various countries. In view of the shortcomings in the current research on the thematic evolution and thematic and thematic prediction, such as the ignorance of random features during scientific innovation, the defects of manual classification, and the difficulty of identifying technical terms, this research proposes a new combined method. First, the Latent Dirichlet Allocation (LDA) algorithm in machine learning is used to capture the potential clustering of themes in the literature sample set of land degradation research. The distribution characteristics and evolution of themes in each period are then analyzed. The method is combined with the Hidden Markov Model (HMM), which contains double stochastic process to quantitatively predict the trend of future thematic evolution. Finally, the above-mentioned combined method is used to analyze the evolution characteristics and future development trends of the themes in the field of land degradation. Comparative experiments show that the method in this study is effective and practical. The research results show that rangeland degradation, surface temperature, island, soil degradation, water quality, crop productivity and restoration are important research topics in the field of land degradation in the future. In addition, based on the advantages of this model, this model can be widely used in the thematic evolution and prediction analysis of different research fields in land use science.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3