Lignocellulosic Biomass Waste-Derived Cellulose Nanocrystals and Carbon Nanomaterials: A Review

Author:

Magagula Lindokuhle Precious,Masemola Clinton Michael,Ballim Muhammed As’ad,Tetana Zikhona Nobuntu,Moloto NosiphoORCID,Linganiso Ella CebisaORCID

Abstract

Rapid population and economic growth, excessive use of fossil fuels, and climate change have contributed to a serious turn towards environmental management and sustainability. The agricultural sector is a big contributor to (lignocellulosic) waste, which accumulates in landfills and ultimately gets burned, polluting the environment. In response to the current climate-change crisis, policymakers and researchers are, respectively, encouraging and seeking ways of creating value-added products from generated waste. Recently, agricultural waste has been regularly appearing in articles communicating the production of a range of carbon and polymeric materials worldwide. The extraction of cellulose nanocrystals (CNCs) and carbon quantum dots (CQDs) from biomass waste partially occupies some of the waste-recycling and management space. Further, the new materials generated from this waste promise to be effective and competitive in emerging markets. This short review summarizes recent work in the area of CNCs and CQDs synthesised from biomass waste. Synthesis methods, properties, and prospective application of these materials are summarized. Current challenges and the benefits of using biomass waste are also discussed.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3