SGDAN—A Spatio-Temporal Graph Dual-Attention Neural Network for Quantified Flight Delay Prediction

Author:

Guo ZiyuORCID,Mei Guangxu,Liu ShijunORCID,Pan LiORCID,Bian LeiORCID,Tang Hongwu,Wang Diansheng

Abstract

There has been a lot of research on flight delays. But it is more useful and difficult to estimate the departure delay time especially three hours before the scheduled time of departure, from which passengers can reasonably plan their travel time and the airline and airport staff can schedule flights more reasonably. In this paper, we develop a Spatio-temporal Graph Dual-Attention Neural Network (SGDAN) to learn the departure delay time for each flight with real-time conditions at three hours before the scheduled time of departure. Specifically, it first models the air traffic network as graph sequences, what is, using a heterogeneous graph to model a flight and its adjacent flights with the same departure or arrival airport in a special time interval, and using a sequence to model the flight and its previous flights that share the same aircraft. The main contributions of this paper are using heterogeneous graph-level attention to learn the influence between the flight and its adjacent flight together with sequence-level attention to learn the influence between the flight and its previous flight in the flight sequence. With aggregating features from the learned influence from both graph-level and sequence-level attention, SGDAN can generate node embedding to estimate the departure delay time. Experiments on a real-world large-scale data set show that SGDAN produces better results than state-of-the-art models in the accurate flight delay time estimation task.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3