Data-Driven Departure Flight Time Prediction Based on Feature Construction and Ensemble Learning

Author:

Xu Jiaxin1,Zhang Junfeng1ORCID,Peng Zihan1,Bao Jie1,Wang Bin2

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, People’s Republic of China

2. Civil Aviation Administration of China, 510403 Guangzhou, People’s Republic of China

Abstract

Temporal–spatial resource optimization within the terminal maneuvering area has become an important research direction to meet the growing demand for air traffic. Accurate departure flight time prediction from taking off to the metering fixes is critical for departure management, connecting the surface operations, and overhead stream insertion. This paper employs ensemble learning methods (including bagging, boosting, and stacking) to predict departure flight times via different metering fixes based on four feature categories: initial states, operating situation, traffic demand, and wind velocity. The stacking method employs a linear regressor, a support vector regressor, and a tree-based ensemble regressor as base learners. The Guangzhou Baiyun International Airport case study shows that the stacking method proposed in this work outperforms other methods and could achieve satisfactory performance in departure flight time prediction, with a high prediction accuracy of up to 89% within a 1 min absolute error and 98% within a 2 min absolute error. Besides, the affecting factors analysis indicates that the operation direction, flight distance, and traffic demand in different areas significantly improve prediction accuracy.

Funder

Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China

Postgraduate Research Practice Innovation Program of NUAA

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3