Affiliation:
1. Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, People’s Republic of China
2. Civil Aviation Administration of China, 510403 Guangzhou, People’s Republic of China
Abstract
Temporal–spatial resource optimization within the terminal maneuvering area has become an important research direction to meet the growing demand for air traffic. Accurate departure flight time prediction from taking off to the metering fixes is critical for departure management, connecting the surface operations, and overhead stream insertion. This paper employs ensemble learning methods (including bagging, boosting, and stacking) to predict departure flight times via different metering fixes based on four feature categories: initial states, operating situation, traffic demand, and wind velocity. The stacking method employs a linear regressor, a support vector regressor, and a tree-based ensemble regressor as base learners. The Guangzhou Baiyun International Airport case study shows that the stacking method proposed in this work outperforms other methods and could achieve satisfactory performance in departure flight time prediction, with a high prediction accuracy of up to 89% within a 1 min absolute error and 98% within a 2 min absolute error. Besides, the affecting factors analysis indicates that the operation direction, flight distance, and traffic demand in different areas significantly improve prediction accuracy.
Funder
Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China
Postgraduate Research Practice Innovation Program of NUAA
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献