Determination and Verification of GISSMO Fracture Properties of Bolts Used in Radioactive Waste Transport Containers

Author:

Gu Bonjoon,Lim JongminORCID,Hong SeokmooORCID

Abstract

Transport containers for radioactive materials should withstand drop tests according to the regulations. In order to prevent a loss or dispersal of the internal radioactive materials in the drop tests, a tightening of the lid of the transport container should be maintained. The opening of the lid, due to the drop impact, might cause the dispersion of internal contents or a loss of shielding performance. Thus, it is crucial to predict damage to the fastening bolt and its fracture. In this study, the damage parameters of the fastening bolt were acquired, and its fracture was predicted using the generalized incremental stress state-dependent damage model (GISSMO), a phenomenological damage model. Since the dedicated transport container is large and heavy, various jigs that can simulate the fall of the container were designed, and the accuracy of fracture prediction was verified. Digital image correlation (DIC) was introduced for the accurate measurement of the displacement, and load–displacement data for tensile, shear, and combined loads were successfully acquired. Finally, the load–displacement curve of the finite element analysis (FEA) with GISSMO until the point of the bolt fracture was compared with the curve obtained from the experiment, where a good agreement was observed.

Publisher

MDPI AG

Subject

General Materials Science

Reference21 articles.

1. Regulations for the Safe Transport of Radioactive Material,2018

2. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material,2014

3. Management of Problematic Waste and Material Generated during the Decommissioning of Nuclear Facilities,2006

4. The important role and performance of engineered barriers in a UK geological disposal facility for higher activity radioactive waste

5. The characterization of radioactive waste: a critical review of techniques implemented or under development at CEA, France

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3