Numerical Simulation of High Strain Rate and Temperature Properties of Laser Powder Bed Fusion Ti6Al4V(ELI) Determined Using a Split Hopkinson Pressure Bar

Author:

Muiruri AmosORCID,Maringa MainaORCID,Preez Willie duORCID

Abstract

Numerical models can be useful for analysis of the ability of structural engineering materials to withstand harsh environmental conditions such as dynamic loading. In the present study, a microstructure-variable-based numerical model for predicting the high strain rate and temperature properties of different microstructures of Ti6Al4V (ELI-Extra Low Interstitial) produced by laser-based powder bed fusion is proposed. The model was implemented in two different subroutines, VUMAT and VUHARD, available in ABAQUS/Explicit for simulating dynamic conditions. The two subroutines were then used to simulate the split Hopkinson pressure bar (SHPB) experiments to study the flow properties of various forms of the direct metal laser sintered Ti6Al4V(ELI) alloy at various conditions of strain rate and temperature. Comparison of the results obtained through simulation and those obtained from experimental testing showed high degrees of correlation and accuracy with correlation coefficients and absolute percentage errors >0.97 and <4%, respectively. The numerical model was also shown to give good predictions of the strain hardening and dynamic recovery phenomena that prevail for deformations at high strain rates and temperatures.

Funder

South African Department of Science and Innovation (DSI) through the Council for Scientific and Industrial Research (CSIR) for the Collaborative Program in Additive Manufacturing

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3