An AWS Machine Learning-Based Indirect Monitoring Method for Deburring in Aerospace Industries Towards Industry 4.0

Author:

Caesarendra Wahyu,Pappachan Bobby,Wijaya Tomi,Lee Daryl,Tjahjowidodo Tegoeh,Then David,Manyar OmeyORCID

Abstract

The number of studies on the Internet of Things (IoT) has grown significantly in the past decade and has been applied in various fields. The IoT term sounds like it is specifically for computer science but it has actually been widely applied in the engineering field, especially in industrial applications, e.g., manufacturing processes. The number of published papers in the IoT has also increased significantly, addressing various applications. A particular application of the IoT in these industries has brought in a new term, the so-called Industrial IoT (IIoT). This paper concisely reviews the IoT from the perspective of industrial applications, in particular, the major pillars in order to build an IoT application, i.e., architectural and cloud computing. This enabled readers to understand the concept of the IIoT and to identify the starting point. A case study of the Amazon Web Services Machine Learning (AML) platform for the chamfer length prediction of deburring processes is presented. An experimental setup of the deburring process and steps that must be taken to apply AML practically are also presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference13 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3