Use of machine learning models in condition monitoring of abrasive belt in robotic arm grinding process

Author:

Surindra Mochamad Denny,Alfarisy Gusti Ahmad Fanshuri,Caesarendra WahyuORCID,Petra Mohamad Iskandar,Prasetyo Totok,Tjahjowidodo Tegoeh,Królczyk Grzegorz M.,Glowacz Adam,Gupta Munish Kumar

Abstract

AbstractAlthough the aspects that affect the performance and the deterioration of abrasive belt grinding are known, wear prediction of abrasive belts in the robotic arm grinding process is still challenging. Massive wear of coarse grains on the belt surface has a serious impact on the integrity of the tool and it reduces the surface quality of the finished products. Conventional wear status monitoring strategies that use special tools result in the cessation of the manufacturing production process which sometimes takes a long time and is highly dependent on human capabilities. The erratic wear behavior of abrasive belts demands machining processes in the manufacturing industry to be equipped with intelligent decision-making methods. In this study, to maintain a uniform tool movement, an abrasive belt grinding is installed at the end-effector of a robotic arm to grind the surface of a mild steel workpiece. Simultaneously, accelerometers and force sensors are integrated into the system to record its vibration and forces in real-time. The vibration signal responses from the workpiece and the tool reflect the wear level of the grinding belt to monitor the tool’s condition. Intelligent monitoring of abrasive belt grinding conditions using several machine learning algorithms that include K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Decision Tree (DT) are investigated. The machine learning models with the optimized hyperparameters that produce the highest average test accuracy were found using the DT, Random Forest (RF), and XGBoost. Meanwhile, the lowest latency was obtained by DT and RF. A decision-tree-based classifier could be a promising model to tackle the problem of abrasive belt grinding prediction. The application of various algorithms will be a major focus of our research team in future research activities, investigating how we apply the selected methods in real-world industrial environments.

Funder

Universiti Brunei Darussalam

Narodowa Agencja Wymiany Akademickiej

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3