Abstract
Extracting accurate values for relevant unknown parameters of solar cell models is vital and necessary for performance analysis of a photovoltaic (PV) system. This paper presents an effective application of a young, yet efficient metaheuristic, named the symbiotic organisms search (SOS) algorithm, for the parameter extraction of solar cell models. SOS, inspired by the symbiotic interaction ways employed by organisms to improve their overall competitiveness in the ecosystem, possesses some noticeable merits such as being free from tuning algorithm-specific parameters, good equilibrium between exploration and exploitation, and being easy to implement. Three test cases including the single diode model, double diode model, and PV module model are served to validate the effectiveness of SOS. On one hand, the performance of SOS is evaluated by five state-of-the-art algorithms. On the other hand, it is also compared with some well-designed parameter extraction methods. Experimental results in terms of the final solution quality, convergence rate, robustness, and statistics fully indicate that SOS is very effective and competitive.
Funder
National Natural Science Foundation of China
Science and Technology Foundation of Guizhou Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献