Archimedes optimization algorithm based parameter extraction of photovoltaic models on a decent basis for novel accurate RMSE calculation

Author:

Hussain Md Tahmid,Hussan Md Reyaz,Tariq Mohd,Sarwar Adil,Ahmad Shafiq,Poshtan Majid,Mahmoud Haitham A.

Abstract

Solar photovoltaic (PV) technology stands as a promising alternative to conventional fossil fuel-based power generation, offering pollution-free and low-maintenance energy production. To harness its potential effectively, understanding the power generation process and accurately modeling solar PV systems are essential. Unfortunately, manufacturers often do not provide the necessary parameters for modeling solar cells, making it challenging for researchers. This research employs the Archimedes Optimization Algorithm (AOA), an optimization technique, to determine unknown parameters for the PVM752 GaAs thin film solar cell and the RTC France solar cell. The modeling of these solar cells utilizes both a Single Diode Model (SDM) and a Double Diode Model (DDM). Performance evaluations are conducted using the sum of individual absolute errors (SIAE) and a novel root mean square error (RMSE) method. Comparing the effectiveness of the AOA with other optimization methods, The RMSEs for the AOA applied to the SDM and DDM of RTC France solar cell were 3.7415 × 10–3 and 1.0033 × 10–3. Similarly, for PVM752 GaAs thin film solar cell were 1.6564 × 10–3, and 0.00106365, respectively. The SIAE values for both solar diode models of RTC France cells were 0.071845 and 0.021268, respectively. For the PVM752 GaAs thin film, the corresponding SIAE values were 0.031488 and 0.040224. The results highlight the efficiency of the AOA-based approach, showcasing consistent convergence and a high level of accuracy in obtained solutions. The suggested approach produces superior results with a lower RMSE compared to other algorithms, demonstrating its efficacy in determining solar PV parameters for modeling purposes.

Funder

King Saud University

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3