Unsteady Stagnation-Point Flow and Heat Transfer Over a Permeable Exponential Stretching/Shrinking Sheet in Nanofluid with Slip Velocity Effect: A Stability Analysis

Author:

Dzulkifli Nor,Bachok Norfifah,Yacob Nor,Md Arifin Norihan,Rosali Haliza

Abstract

A model of unsteady stagnation-point flow and heat transfer over a permeable exponential stretching/shrinking sheet with the presence of velocity slip is considered in this paper. The nanofluid model proposed by Tiwari and Das is applied where water with Prandtl number 6.2 has been chosen as the base fluid, while three different nanoparticles are taken into consideration, namely Copper, Alumina, and Titania. The ordinary differential equations are solved using boundary value problem with fourth order accuracy (bvp4c) program in Matlab to find the numerical solutions of the skin friction and heat transfer coefficients for different parameters such as stretching/shrinking, velocity slip, nanoparticle volume fraction, suction/injection, and also different nanoparticles, for which the obtained results (dual solutions) are presented graphically. The velocity and temperature profiles are presented to show that the far field boundary conditions are asymptotically fulfilled, and validate the findings of dual solutions as displayed in the variations of the skin friction and heat transfer coefficients. The last part is to perform the stability analysis to determine a stable and physically-realizable solution.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3