Abstract
Optical coherence tomography (OCT), an optical imaging approach enabling cross-sectional analysis of turbid samples, is routinely used for retinal imaging in human and animal models of diseases affecting the retina. Scattering angle resolved (SAR-)OCT has previously been demonstrated as offering additional contrast in human studies, but no SAR-OCT system has been reported in detail for imaging the retinas of mice. An optical model of a mouse eye was designed and extended for validity at wavelengths of light around 1310 nm; this model was then utilized to develop a SAR-OCT design for murine retinal imaging. A Monte Carlo technique simulates light scattering from the retina, and the simulation results are confirmed with SAR-OCT images. Various images from the SAR-OCT system are presented and utility of the system is described. SAR-OCT is demonstrated as a viable and robust imaging platform to extend utility of retinal OCT imaging by incorporating scattering data into investigative ophthalmologic analysis.
Funder
National Institutes of Health
Fulbright Association
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献