Abstract
(1) Background: Predicting which patients with upper gastro-intestinal bleeding (UGIB) will receive intervention during urgent endoscopy can allow for better triaging and resource utilization but remains sub-optimal. Using machine learning modelling we aimed to devise an improved endoscopic intervention predicting tool. (2) Methods: A retrospective cohort study of adult patients diagnosed with UGIB between 2012–2018 who underwent esophagogastroduodenoscopy (EGD) during hospitalization. We assessed the correlation between various parameters with endoscopic intervention and examined the prediction performance of the Glasgow-Blatchford score (GBS) and the pre-endoscopic Rockall score for endoscopic intervention. We also trained and tested a new machine learning-based model for the prediction of endoscopic intervention. (3) Results: A total of 883 patients were included. Risk factors for endoscopic intervention included cirrhosis (9.0% vs. 3.8%, p = 0.01), syncope at presentation (19.3% vs. 5.4%, p < 0.01), early EGD (6.8 h vs. 17.0 h, p < 0.01), pre-endoscopic administration of tranexamic acid (TXA) (43.4% vs. 31.0%, p < 0.01) and erythromycin (17.2% vs. 5.6%, p < 0.01). Higher GBS (11 vs. 9, p < 0.01) and pre-endoscopy Rockall score (4.7 vs. 4.1, p < 0.01) were significantly associated with endoscopic intervention; however, the predictive performance of the scores was low (AUC of 0.54, and 0.56, respectively). A combined machine learning-developed model demonstrated improved predictive ability (AUC 0.68) using parameters not included in standard GBS. (4) Conclusions: The GBS and pre-endoscopic Rockall score performed poorly in endoscopic intervention prediction. An improved predictive tool has been proposed here. Further studies are needed to examine if predicting this important triaging decision can be further optimized.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献