Predicting mortality in patients with nonvariceal upper gastrointestinal bleeding using machine-learning

Author:

Ungureanu Bogdan Silviu,Gheonea Dan Ionut,Florescu Dan Nicolae,Iordache Sevastita,Cazacu Sergiu Marian,Iovanescu Vlad Florin,Rogoveanu Ion,Turcu-Stiolica Adina

Abstract

BackgroundNon-endoscopic risk scores, Glasgow Blatchford (GBS) and admission Rockall (Rock), are limited by poor specificity. The aim of this study was to develop an Artificial Neural Network (ANN) for the non-endoscopic triage of nonvariceal upper gastrointestinal bleeding (NVUGIB), with mortality as a primary outcome.MethodsFour machine learning algorithms, namely, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), logistic regression (LR), K-Nearest Neighbor (K-NN), were performed with GBS, Rock, Beylor Bleeding score (BBS), AIM65, and T-score.ResultsA total of 1,096 NVUGIB hospitalized in the Gastroenterology Department of the County Clinical Emergency Hospital of Craiova, Romania, randomly divided into training and testing groups, were included retrospectively in our study. The machine learning models were more accurate at identifying patients who met the endpoint of mortality than any of the existing risk scores. AIM65 was the most important score in the detection of whether a NVUGIB would die or not, whereas BBS had no influence on this. Also, the greater AIM65 and GBS, and the lower Rock and T-score, the higher mortality will be.ConclusionThe best accuracy was obtained by the hyperparameter-tuned K-NN classifier (98%), giving the highest precision and recall on the training and testing datasets among all developed models, showing that machine learning can accurately predict mortality in patients with NVUGIB.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3