A Comparison of Machine Learning and Deep Learning Techniques for Activity Recognition using Mobile Devices

Author:

Baldominos Alejandro,Cervantes Alejandro,Saez YagoORCID,Isasi Pedro

Abstract

We have compared the performance of different machine learning techniques for human activity recognition. Experiments were made using a benchmark dataset where each subject wore a device in the pocket and another on the wrist. The dataset comprises thirteen activities, including physical activities, common postures, working activities and leisure activities. We apply a methodology known as the activity recognition chain, a sequence of steps involving preprocessing, segmentation, feature extraction and classification for traditional machine learning methods; we also tested convolutional deep learning networks that operate on raw data instead of using computed features. Results show that combination of two sensors does not necessarily result in an improved accuracy. We have determined that best results are obtained by the extremely randomized trees approach, operating on precomputed features and on data obtained from the wrist sensor. Deep learning architectures did not produce competitive results with the tested architecture.

Funder

Nvidia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-based gait authentication using multi-modal sensors at the tactical edge device: smartphone;Big Data VI: Learning, Analytics, and Applications;2024-06-10

2. M3BAT: Unsupervised Domain Adaptation for Multimodal Mobile Sensing with Multi-Branch Adversarial Training;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-05-13

3. Internet of robotic things for independent living: Critical analysis and future directions;Internet of Things;2024-04

4. Dual attention-based deep learning for construction equipment activity recognition considering transition activities and imbalanced dataset;Automation in Construction;2024-04

5. Unveiling Novel Techniques for Human Activity Recognition with Smartphone Sensors;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3