The Promise of mHealth

Author:

Dobkin Bruce H.1,Dorsch Andrew1

Affiliation:

1. Geffen UCLA School of Medicine, Los Angeles, CA, USA

Abstract

Mobile health tools that enable clinicians and researchers to monitor the type, quantity, and quality of everyday activities of patients and trial participants have long been needed to improve daily care, design more clinically meaningful randomized trials of interventions, and establish cost-effective, evidence-based practices. Inexpensive, unobtrusive wireless sensors, including accelerometers, gyroscopes, and pressure-sensitive textiles, combined with Internet-based communications and machine-learning algorithms trained to recognize upper- and lower-extremity movements, have begun to fulfill this need. Continuous data from ankle triaxial accelerometers, for example, can be transmitted from the home and community via WiFi or a smartphone to a remote data analysis server. Reports can include the walking speed and duration of every bout of ambulation, spatiotemporal symmetries between the legs, and the type, duration, and energy used during exercise. For daily care, this readily accessible flow of real-world information allows clinicians to monitor the amount and quality of exercise for risk factor management and compliance in the practice of skills. Feedback may motivate better self-management as well as serve home-based rehabilitation efforts. Monitoring patients with chronic diseases and after hospitalization or the start of new medications for a decline in daily activity may help detect medical complications before rehospitalization becomes necessary. For clinical trials, repeated laboratory-quality assessments of key activities in the community, rather than by clinic testing, self-report, and ordinal scales, may reduce the cost and burden of travel, improve recruitment and retention, and capture more reliable, valid, and responsive ratio-scaled outcome measures that are not mere surrogates for changes in daily impairment, disability, and functioning.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3