Effect of Deadwood Decomposition on the Restoration of Soil Cover in Landslide Areas of the Karpaty Mountains, Poland

Author:

Piaszczyk WojciechORCID,Lasota Jarosław,Gaura Grzegorz,Błońska EwaORCID

Abstract

Disturbances play an essential role in the shaping of temporal and spatial heterogeneity in natural community structures. The aim of this study was to provide an assessment of the deadwood influence on the chemical and biochemical properties of soils in a landslide area. The samples used to determine soil properties were collected from the entire landslide area, with locations distributed on a regular grid (50 × 50 m). The soil samples were collected from directly under the logs, and background soil samples were taken 1 m from the deadwood logs. The effect of the deadwood decomposition process was visible in the total organic carbon (C) and nitrogen (N) content and microbial activity of the soil. An increase in the enzyme activity and microbial biomass of the soil from directly beneath the deadwood was noted. In this study, it was found that a greater stock of deadwood was present in the accumulation zone, which resulted in a stronger effect of the released components on the soil cover. In order to restore landslide soils, microbial activity can be effectively stimulated by leaving deadwood on the landslide surface.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3