Study of Atmospheric Pressure Plasma Temperature Based on Silicon Carbide Etching

Author:

Xu Shaozhen1,Yuan Julong1,Zhou Jianxing1,Cheng Kun1,Gan Hezhong1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

In order to further understand the excitation process of inductively coupled plasma (ICP) and improve the etching efficiency of silicon carbide (SiC), the effect of temperature and atmospheric pressure on plasma etching of silicon carbide was investigated. Based on the infrared temperature measurement method, the temperature of the plasma reaction region was measured. The single factor method was used to study the effect of the working gas flow rate and the RF power on the plasma region temperature. Fixed-point processing of SiC wafers analyzes the effect of plasma region temperature on the etching rate. The experimental results showed that the plasma temperature increased with increasing Ar gas until it reached the maximum value at 15 slm and decreased with increasing flow rate; the plasma temperature increased with a CF4 flow rate from 0 to 45 sccm until the temperature stabilized when the flow rate reached 45 sccm. The higher the RF power, the higher the plasma region’s temperature. The higher the plasma region temperature, the faster the etching rate and the more pronounced the effect on the non-linear effect of the removal function. Therefore, it can be determined that for ICP processing-based chemical reactions, the increase in plasma reaction region temperature leads to a faster SiC etching rate. By processing the dwell time in sections, the nonlinear effect caused by the heat accumulation on the component surface is effectively improved.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3