The Performance of the Two-Seeded GdBCO Superconductor Bulk with the Buffer by the Modified TSMG Method

Author:

Zhang Yufeng12ORCID,Li Chunyan1,Lou Ziwei1,Zhang Penghe1,Zhang Yan1,Shen Shuangyuan1,Ruan Guanjie1,Zhang Jiaying1

Affiliation:

1. College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China

2. Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China

Abstract

The multiseeding technique is a method to grow large-sized REBa2Cu3O7−δ (REBCO, where RE is a rare earth element) high temperature superconducting bulks. However, due to the existence of grain boundaries between seed crystals, the superconducting properties of bulks are not always better than those of single grain bulks. In order to improve the superconducting properties caused by grain boundaries, we introduced buffer layers with a diameter of 6 mm in the growth of GdBCO bulks. Using the modified top-seeded melt texture growth method (TSMG), that is, YBa2Cu3O7−δ (Y123) as the liquid phase source, two GdBCO superconducting bulks with buffer layers with a diameter of 25 mm and a thickness of 12 mm were successfully prepared. The seed crystal arrangement of two GdBCO bulks with a distance of 12 mm were (100/100) and (110/110), respectively. The trapped field of the GdBCO superconductor bulks exhibited two peaks. The maximum peaks of superconductor bulk SA (100/100) were 0.30 T and 0.23 T, and the maximum peaks of superconductor bulk SB (110/110) were 0.35 T and 0.29 T. The critical transition temperature remained between 94 K and 96 K, with superior superconducting properties. The maximum JC, self-field of SA appeared in specimen b5, which was 4.5 × 104 A/cm2. Compared with SA, the JC value of SB had obvious advantages in a low magnetic field, medium magnetic field and high magnetic field. The maximum JC, self-field value appeared in specimen b2, which was 4.65 × 104 A/cm2. At the same time, it showed an obvious second peak effect, which was attributed to Gd/Ba substitution. Liquid phase source Y123 increased the concentration of the Gd solute dissolved from Gd211 particles, reduced the size of Gd211 particles and optimized JC. For SA and SB under the joint action of the buffer and the Y123 liquid source, except for the contribution of Gd211 particles to be the magnetic flux pinning center with the improvement of JC, the pores also played a positive role in improving the local JC. More residual melts and impurity phases were observed in SA than in SB, which had a negative impact on the superconducting properties. Thus, SB exhibited a better trapped field and JC.

Funder

the National Natural Science Foundation of China

the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of China

the Innovation Program of Shanghai Municipal Education Commission, China

the Opening Project of Shanghai Key Laboratory of High Temperature Superconductors

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3