Mechanical Analysis and Testing of Conduction-Cooled Superconducting Magnet for Levitation Force Measurement Application

Author:

Liu Liyuan1,Chen Wei2,Zhuang Huimin1,Chi Fei2,Wang Gang1,Zhang Gexiang1ORCID,Jiang Jing3,Yang Xinsheng3,Zhao Yong34

Affiliation:

1. School of Automation, Chengdu University of Information Technology, Chengdu 610225, China

2. School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China

3. Superconductor and New Energy R&D Center, Southwest Jiaotong University, Chengdu 610031, China

4. College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China

Abstract

High-temperature superconductors have great potential for various engineering applications such as a flywheel energy storage system. The levitation force of bulk YBCO superconductors can be drastically increased by increasing the strength of the external field. Therefore, a 6T conduction-cooled superconducting magnet has been developed for levitation force measurement application. Firstly, to protect the magnet from mechanical damage, reliable stress analysis inside the coil is paramount before the magnet is built and tested. Therefore, a 1/4 two-dimensional (2D) axisymmetric model of the magnet was established, and the mechanical stress in the whole process of winding, cooling down and energizing of the magnet was calculated. Then, the charging, discharging, and preliminary levitation force performance tests were performed to validate the operating stability of the magnet. According to the simulation results, the peak stresses of all coil models are within the allowable value and the winding maintains excellent mechanical stability in the superconducting magnet. The test results show that the superconducting magnet can be charged to its desired current of 150 A without quenching and maintain stable operation during the charging and discharging process. What is more, the superconducting magnet can meet the requirements for the levitation force measurement of both low magnetic field and high magnetic field.

Funder

Industrial Science and Technology Project of Yueqing City

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3