Comparison of Long Short-Term Memory and Weighted Regressions on Time, Discharge, and Season Models for Nitrate-N Load Estimation

Author:

Jung Kichul,Um Myoung-JinORCID,Markus MomciloORCID,Park DaeryongORCID

Abstract

The long short-term memory (LSTM) model has been widely used for a broad range of applications entailing the estimation of variables in different fields to improve water quality management in rivers. The main objectives of this study are (1) to develop a novel LSTM-based model for the estimation of nitrate-N loads, which adversely affect water resources, and (2) to evaluate the performance of the model by comparing it with that of Monte Carlo sub-sampling and the weighted regressions on time discharge and season (WRTDS) model. We evaluated the model performance using various numbers of hidden layers, ranging from one to four, in the LSTM model to determine the appropriate number of hidden layers; furthermore, we applied the sampling frequencies of 6, 12, and 24 to assess their impact. Seven polluted river basins in the United States were used for analysis, and the relative root mean squared error (rRMSE) and the mean percentage error (MPE) metrics were applied for the validation of the model estimates. The proposed model achieved accurate nitrate-N load estimates using three to four hidden layers, and improved model performance was observed when the sampling frequency was increased. The differences among the results obtained using the LSTM model were examined based on a binning technique via a log-log plot of nitrate-N concentration against discharge. The binning analysis showed that the slope obtained from the average rates of discharge and low discharge values apparently influenced the estimates. Furthermore, box plot analyses of the statistical indices such as rRMSE and MPE demonstrate that the LSTM model seems to exhibit better performance than the WRTDS model. The results of the examination demonstrate that the LSTM model may be a good alternative with regard to estimating nitrate-N loads for the control of water quality constituents.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3